LESSON 5.4
 GROVER'S SEARCH ALGORITHM

Valter Uotila

OUTLINE

Introduction

Amplitude amplification

Grover's algorithm

Demonstrations

MOTIVATION \& BACKGROUND

- Lov Grover [6] developed Grover's search algorithm in 1996
- Note that the title of the original paper is A fast quantum mechanical algorithm for database search
- Unlike Deutsch-Jozsa algorithm, Grover's algorithm has practical applications. It forms central part in many other quantum algorithms. More about this in the end.
- This presentation is based on [1, 8, 7]

CLASSICAL SEARCH PROBLEM

Problem

Search an element from an unsorted list.

- On avarage we need to check $\frac{n}{2}$ elements from the list

CLASSICAL SEARCH PROBLEM

Problem

Search an element from an unsorted list.

- On avarage we need to check $\frac{n}{2}$ elements from the list
- To find the element with 100% certainty, we need to check all the n elements

CLASSICAL SEARCH PROBLEM

Problem

Search an element from an unsorted list.

- On avarage we need to check $\frac{n}{2}$ elements from the list
- To find the element with 100% certainty, we need to check all the n elements
- Grover's algorithm enables us to find the element with \sqrt{n} steps with high probability

CLASSICAL SEARCH PROBLEM

Problem

Search an element from an unsorted list.

- On avarage we need to check $\frac{n}{2}$ elements from the list
- To find the element with 100% certainty, we need to check all the n elements
- Grover's algorithm enables us to find the element with \sqrt{n} steps with high probability
- This is not exponential speedup but polynomial

INITIALIZATION

Initially we assume that we have a list of 2^{k} elements where one of the elements is marked. For example, when $k=4$ we can have the following list and the marked element is 5 :

HADAMARD TRANSFORM

We are familiar with the Hadamard transform. When $k=4$, we have the circuit

HADAMARD TRANSFORM

The Hadamard transform creates an equal superposition between all the states. The states correspond to the elements of the list. For example, the marked element 5 corresponds to the state |1010〉 because the binary representation of 5 is 101 .

HADAMARD TRANSFORM

Considering the list after Hadamard transform, the amplitudes corresponding to each element are now equal:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

AGAIN ORACLES

The idea is to create an oracle which flips the phase of the marked element. In the example, that means:

NAIVE GROVER ORACLE FROM MATRIX

It is easy to implement the oracle in small cases if we deal with a quantum computer and software that can implement unitary operators based on their matrices. In the case $k=4$, the oracle matrix is the identity matrix where the diagonal value for the marked element $x_{5,5}$ is changed to -1 . This matrix selects the corresponding state and flips its phase. If s is the marked element, the oracle is:

$$
U_{f}=I-2|s\rangle\langle s| .
$$

GROVER ORACLE

We can calculate that $U_{f}=I-2|s\rangle\langle s|$ works as we want. First

$$
U_{f}|s\rangle=(I-2|s\rangle\langle s|)|s\rangle=|s\rangle-2|s\rangle\langle s \mid s\rangle=-|s\rangle,
$$

because the element's inner product $\langle s \mid s\rangle$ with itself is always 1 . For states $|x\rangle \neq|s\rangle$ in the basis we have

$$
U_{f}|x\rangle=(I-2|s\rangle\langle s|)|x\rangle=|x\rangle-2|s\rangle\langle s \mid x\rangle=|x\rangle,
$$

because $\langle s \mid x\rangle=0$ for any pair of different basis states. This shows that U_{f} flips the phase of the marked element.

GROVER ORACLE CONSTRUCTED FROM GATES

- In a real application, it is not practical to create 2^{k} sized matrices and build gates based on them, although the approach is simple and it gives some intuition
- Thus, we need to express Grover oracle with gates
- This requires one ancilla qubit
- As in the previous lessons, an ancilla qubit is prepared in state $|-\rangle$ because then $X|-\rangle=-|-\rangle$
- Then we use multi-control-CNOT operation

GROVER ORACLE CONSTRUCTED FROM GATES: EXAMPLE

Now $5=1010_{2}$. Thus we can map it to the binary element 1111 by applying X-gate to the second and last qubit. Because now the marked element is 1111 in the changed basis, we can apply the oracle matrix where -1 is in right corner:

$$
\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
0 & \ldots & 1 & 0 \\
0 & \ldots & 0 & -1
\end{array}\right]
$$

This matrix is easy to implement with the following circuit.

GROVER ORACLE CONSTRUCTED FROM GATES: EXAMPLE

Grover oracle as circuit in the case $k=4$ and the searched element is 5 :

GROVER ORACLE CONSTRUCTED FROM GATES

- If we are precise, multi-control-CNOT is not a standard gate either and it could be decocomposed into more fundamental gates (T-gates and CNOTs)

GROVER ORACLE CONSTRUCTED FROM GATES

- If we are precise, multi-control-CNOT is not a standard gate either and it could be decocomposed into more fundamental gates (T-gates and CNOTs)
- Anyway, these decompositions are not necessarily relevant in order to understand the core idea of Grover's algorithm

AMPLITUDE AMPLIFICATION

All in all, after applying the oracle, the list is in the state:

Let $|\varphi\rangle=H^{\otimes n}|0\rangle$ be the uniform superposition.

AMPLITUDE AMPLIFICATION

Since every element in the list is represented as a vector in 2^{4} dimensional space, we can divide the system into two parts:

1. part proportional to $|\varphi\rangle$ and
2. part orthogonal to $|\varphi\rangle$.

The proportional part is

AMPLITUDE AMPLIFICATION

The orthogonal part is

AMPLITUDE AMPLIFICATION

The flipped orthogonal part is

AMPLITUDE AMPLIFICATION

AMPLITUDE AMPLIFICATION

When we measure, the probability of measuring the element 5 is the highest. What operators could perform this amplitude amplification?

DIFFUSION OPERATOR

- Recall that the oracle in Grover's algorithm flips the amplitude of the searched element
- Now we want something which leaves the uniform superposition alone, but flips the sign of "everything else", i.e., the states orthogonal to the uniform superposition
The option for this is

$$
D=2|\varphi\rangle\langle\varphi|-I,
$$

where $|\varphi\rangle$ is the uniform superposition with a single flipped amplitude.

DIFFUSION OPERATOR

- Similar calculations as we did for oracle U_{f} show that $D|\varphi\rangle=|\varphi\rangle$ and $D|\psi\rangle=-|\psi\rangle$ for any state $|\psi\rangle$ orthogonal to $|\varphi\rangle$. This shows that D has the wanted effect to the states.
- How do we implement D as a circuit? We know how to implement U_{f} and we note that $-D=I-2|\varphi\rangle\langle\varphi|$ looks very similar to U_{f}

CIRCUIT FOR DIFFUSION OPERATOR

CIRCUIT FOR DIFFUSION OPERATOR

Recall that we set $|\varphi\rangle=H^{\otimes n}|0\rangle$. Now the circuit in the previous slide first maps

$$
|\varphi\rangle=H^{\otimes n}|0\rangle \mapsto H^{\otimes n} H^{\otimes n}|0\rangle=|0\rangle
$$

The multi-control-CNOT gate circled with NOTs is triggered when it gets the state $|0\rangle$. Thus it will apply the NOT gate to the ancilla qubit: $X|-\rangle=-|-\rangle$. That introduces the flip to the phase.

CIRCUIT FOR DIFFUSION OPERATOR

On the other hand, if the state in the beginning of the circuit is orthogonal to $|\varphi\rangle$, say $|\psi\rangle$, then the inner product is

$$
\langle\varphi| H^{\otimes n} H^{\otimes n}|\psi\rangle=\langle\varphi \mid \psi\rangle=0 .
$$

Thus the state $|\psi\rangle$ is orthogonal also after applying the Hadamard transform. Then some of the controls in the multi-control-CNOT are false, and the NOT gate is not triggered. Finally, the second Hadamard transform returns the query register to its state before the transformation.

GROVER OPERATOR

Now the Grover operator is a composition of the oracle U_{f} and the diffusion operator D :

$$
G=D U_{f} .
$$

Now we can write the whole algorithm.

CONSTRUCTING CIRCUIT: INITIALIZATION

The beginning of the circuit is very similar to Deutsch-Josza algorithm:

In the previous lesson we calculated why the circuit produces the state $\frac{1}{\sqrt{2^{n}}} \sum_{i=0}^{2^{n}-1}|i\rangle|-\rangle$.

CONSTRUCTING CIRCUIT: ORACLE

where $U_{f}(|x\rangle \otimes|-\rangle)=(-1)^{f(x)}|x\rangle \otimes|-\rangle$. The function $f(x)=1$ if x is the element we are searching and otherwise $f(x)=0$.
Again the reasoning is similar to the case of the Deutsch-Jozsa algorithm.

CONSTRUCTING CIRCUIT: FULL ALGORITHM

We will discuss later the optimal value for k. After applying Grover operator for suitably many times, we measure the first n qubits. This should return the correct answer with high probability.

GEOMETRIC INTERPRETATION

We can reason the optimal value for k with a geometric argument. Because quantum states are linear combinations of vectors in high dimensional Hilbert space, we can visualize how the Grover operator $G=D U_{f}$ maps the states. We start studying the uniform superposition $|\varphi\rangle=H^{\otimes n}|0\rangle$ and the solution state $|s\rangle$. The idea is that the uniform superposition $|\varphi\rangle$ is the initial state where the algorithm starts and $|s\rangle$ is the state whose probability we want to maxime by applying Grover operator suitably many times.

GEOMETRIC INTERPRETATION

Visually (following example in [1])

GEOMETRIC INTERPRETATION

We aim to move the uniform superposition close to the solution

GEOMETRIC INTERPRETATION

The Grover oracle flips the uniform superposition to the other side of one of the axis

GEOMETRIC INTERPRETATION

The diffusion operator flips the state to the other side of the initial uniform superposition

Now we see that the output vector after a single application of the Grover operator has moved the vector closer to the solution.

GEOMETRIC INTERPRETATION

When we repeat the process suitably we can get close to the solution

GEOMETRIC INTERPRETATION

If we repeat too many times, we start getting further from the solution

WHAT IS OPTIMAL NUMBER OF GROVER OPERATORS?

The optimal number of Grover operators is

$$
\frac{\pi}{2} \sqrt{N}
$$

where $N=2^{n}$ and n is the length of the bit strings. The reason for this number can be deduced from this geometrical setting [1] but it requires a bit more mathematical machinery.

HOW MUCH FASTER IS ALGORITHM

- Our classical algorithms work in $\mathcal{O}(N)$ time
- Grover search requires approximately \sqrt{N} Grover operations and thus the time is $\mathcal{O}(\sqrt{N})$
- This is not exponential but quadratic speedup

DEMONSTRATIONS

- Grover search on Quirk
- Grover search using Qiskit
- Grover search using Pennylane

GROVER IN PRACTICE

Some selected papers from Quantum Algorithm Zoo:
https://quantumalgorithmzoo.org/

- Grover Adaptive Search for Constrained Polynomial Binary Optimization [4]
- Speedup Shor's algorithm: Factoring Safe Semiprimes with a Single Quantum Query [5]
- 3-SAT [2]
- Network flows [3]
- String matching [9]

REFERENCES I

[1] Xanadu quantum codebook - learn quantum computing interactively online with pennylane, 2022.
[2] A. Ambainis.
Quantum search algorithms. 2005.
[3] A. Ambainis and R. Spalek.
Quantum algorithms for matching and network flows, 2005.
[4] A. Gilliam, S. Woerner, and C. Gonciulea. Grover adaptive search for constrained polynomial binary optimization.
Quantum, 5:428, apr 2021.
[5] F. Grosshans, T. Lawson, F. Morain, and B. Smith. Factoring safe semiprimes with a single quantum query, 2015.

REFERENCES II

[6] L. K. Grover.
A fast quantum mechanical algorithm for database search.
arXiv e-prints, pages quant-ph/9605043, May 1996.
[7] D. Koch, L. Wessing, and P. M. Alsing.
Introduction to coding quantum algorithms: A tutorial series using qiskit.
arXiv:1903.04359 [quant-ph], Mar 2019.
arXiv: 1903.04359.
[8] C. Lectures.
A practical introduction to quantum computing - Elias Fernandez-Combarro
Alvarez - (4/7).
Feb 2020.
[9] H. Ramesh and V. Vinay.
String matching in $\tilde{o}(\sqrt{n}+\sqrt{m})$ quantum time, 2000.

