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RECAP WHAT WE HAVE
LEARNED SO FAR

• Qubits |0⟩, |1⟩, quantum logic gates, superposition
and engtanglement

• Their implementation in Qiskit
• This presentation is based on [1, 2] and the tutorial

on IBM quantum lab
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RECAP WHAT WE HAVE
LEARNED SO FAR

For this presentation, it is useful to recall Hadamard-gate:

H|0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

|0⟩+ |1⟩√
2

.

and

H|1⟩ = 1√
2

[
1 1
1 −1

] [
0
1

]
=

|0⟩ − |1⟩√
2
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RECAP WHAT WE HAVE
LEARNED SO FAR

Also, it is good to recall that Hadamard-gate is its own
inverse

H
(
|0⟩+ |1⟩√

2

)
= |0⟩

and

H
(
|0⟩ − |1⟩√

2

)
= |1⟩.
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MOTIVATION & BACKGROUND

• Main challenge in quantum computing: develop
algorithms that are provably faster than
corresponding classical algorithms

• This has appeared to be hard!
• Deutsch’s algorithm (1985) is the most simple

example where quantum computing is provably faster
than any other classical algorithm

• No practical usage but theoretically important
• This and the next lesson will be about this algorithm

(2 qubits) and its generalization (Deutsch-Jozsa
algorithm, n > 2 qubits)
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DEUTSCH’S PROBLEM

Constant vs. balanced functions

Let f : {0,1} → {0,1} be a function. There are totally four
different such functions:

1. f (0) = 0 and f (1) = 0 (constant 0 function)
2. f (0) = 1 and f (1) = 1 (constant 1 function)
3. f (0) = 0 and f (1) = 1 (identity function – does not

change anything)
4. f (0) = 1 and f (1) = 0 (swap function – changes the

bits)
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DEUTSCH’S PROBLEM

1. Found out if f is constant or balanced

2. Classically, any algorithm that determines if f is
constant or balanced, needs two steps: we need to
evaluate both f (0) and f (1)

3. Quantum computer manages to solve the problem
with just one step!

4. The algorithm that solves the problem is called
Deutsch’s algorithm
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DEUTSCH’S PROBLEM MORE
FORMALLY

• Define a function g so that g(f ) = 0 if f is constant
and g(f ) = 1 if f is balanced

• This is a decision problem
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NOTATION FOR ORACLES IN
CIRCUIT DIAGRAMS

Oracles have simple expression in circuit diagrams:

|0⟩
Uf

|0⟩

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI Department of Computer Science March 18 10/36



ENCODING THE FUNCTION

1. How do we express the function g in a quantum
computer?

2. Solution: oracle
3. Recall that all the quantum gates need to be

reversible. Oracles will be reversible and unitary as
well.

4. In quantum computing, oracle is a simple matrix that
works as oracles work in computer science: abstract
black-box machine for decision problems.

5. Deutsch’s algorithm speedup with oracle: any
classical algorithm requires two access to the oracle
whereas quantum computer requires just one!
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ENCODING THE FUNCTION

Let x and y be binary variables. We define the function g
with the following formula

g|xy⟩ = |x⟩|y ⊕ f (x)⟩,

where
y ⊕ f (x) = y + f (x) mod 2

is the conventional notation for addition modulo 2. For
example, if f is an identity, then

g|00⟩ = |0⟩|0 ⊕ f (0)⟩ = |0⟩|0 ⊕ 0⟩ = |00⟩.
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ENCODING THE FUNCTION

We can evaluate the function g in all the cases for all four
functions f :

Case 1 2 3 4
g f (0,1) = (0,1) f (0,1) = (1,0) f (0,1) = 0 f (0,1) = 1

g|00⟩ |00⟩ |01⟩ |00⟩ |01⟩
g|01⟩ |01⟩ |00⟩ |01⟩ |00⟩
g|10⟩ |11⟩ |10⟩ |10⟩ |11⟩
g|11⟩ |10⟩ |11⟩ |11⟩ |10⟩

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI Department of Computer Science March 18 13/36



CASE 1

In the case that f is identity, the oracle operates exactly as
CNOT! Thus the oracle for this case is simply:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


|0⟩

Uf

|0⟩
=

|0⟩

|0⟩
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CASE 2

In the case that f is swap, the oracle operates exactly as
not-CNOT: 

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


|0⟩

Uf

|0⟩
=

|0⟩ X X

|0⟩
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CASE 3

In the case that f is constant 0, the oracle operates as
identity: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


|0⟩

Uf

|0⟩
=

|0⟩ I

|0⟩ I

= |0⟩
|0⟩
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CASE 4

In the case that f is constant 1, the oracle applies
not-gate to the second qubit:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


|0⟩

Uf

|0⟩
=

|0⟩

|0⟩ X
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CODING ORACLES IN QISKIT
AND OTHER FRAMEWORKS

We have at least two options to code oracles in
implementations:

1. Create concrete matrix representation (for example
with numpy) and transform that into a gate

2. Use X-gates and CNOTs
The previous slides showed examples of both of these
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OUTLINE

1. Intuition behind the algorithm
2. Circuit that solves the problem
3. Mathematical solution
4. Qiskit implementation and running the algorihtm in

IBM quantum systems
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INITIAL SETTING

We are provided one of the four oracles in the previous
slides. We do not know if the oracle encodes a constant
or balanced function f . Now we want to find out which one
it is. Classically this requires two oracle calls, but now we
solve the problem with just one oracle call!
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INTUITION: UNIFORM
SUPERPOSITION

1. Classically, we need to evaluate the oracle for both 0
and 1

2. Quantumly, we create an equal superposition state of
0 and 1 using Hadamard transform and evaluate the
oracle for the state. This is a kind of parallel execution

3. We apply Hadamard transform again
4. Finally, we measure the outcome. If we obtain 0, we

know that the function is constant. If we obtain 1, the
function is balanced.

5. The exact reason why the algorithm works is
convenient to see mathematically
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HADAMARD TRANSFORM

|0⟩ H
1
2(|0⟩+ |1⟩)(|0⟩ − |1⟩)

|0⟩ X H
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MATHEMATICALLY

Precisly,

(H ⊗ H)(|0⟩ ⊗ X |0⟩) = H|0⟩ ⊗ H|1⟩

=
1√
2

[
1 1
1 −1

] [
1
0

]
⊗ 1√

2

[
1 1
1 −1

] [
0
1

]
=

1
2

([
1
1

]
⊗

[
1
−1

])
=

1
2

([
1
0

]
+

[
0
1

])
⊗
([

1
0

]
−
[
0
1

])
=

1
2
(|0⟩+ |1⟩)(|0⟩ − |1⟩)
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APPLY ORACLE UF

|0⟩ H
Uf φ

|0⟩ X H

where

φ =
1
2
(
(−1)f (0)|0⟩(|0⟩ − |1⟩) + (−1)f (1)|1⟩(|0⟩ − |1⟩)

)
.
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MATHEMATICALLY

Precisly,

Uf

(
1
2
(|0⟩+ |1⟩)(|0⟩ − |1⟩)

)
=

1
2
(Uf |0⟩(|0⟩ − |1⟩) + Uf |1⟩(|0⟩ − |1⟩))

=
1
2
(|0⟩(|0 ⊕ f (0)⟩ − |1 ⊕ f (0)⟩) + |1⟩(|0 ⊕ f (1)⟩ − |1 ⊕ f (1)⟩)) .
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MATHEMATICALLY

If f (0) = 0, then

|0 ⊕ f (0)⟩ − |1 ⊕ f (0)⟩ = |0⟩ − |1⟩.

If f (0) = 1, then

|0 ⊕ f (0)⟩ − |1 ⊕ f (0)⟩ = |1⟩ − |0⟩ = −(|0⟩ − |1⟩).

Thus we can write

|0 ⊕ f (0)⟩ − |1 ⊕ f (0)⟩ = (−1)f (0)(|0⟩ − |1⟩).

Similar reasoning applies for f (1).
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MATHEMATICALLY

Then we can continue

Uf

(
1
2
(|0⟩+ |1⟩)(|0⟩ − |1⟩)

)
=

1
2
(|0⟩(|f (0)⟩ − |1 ⊕ f (0)⟩) + |1⟩(|f (1)⟩ − |1 ⊕ f (1)⟩))

=
1
2
(
(−1)f (0)|0⟩(|0⟩ − |1⟩) + (−1)f (1)|1⟩(|0⟩ − |1⟩)

)
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HADAMARD GATE TO FIRST
QUBIT

|0⟩ H
Uf

H |0⟩(|0⟩ − |1⟩)
or |1⟩(|0⟩ − |1⟩)

|0⟩ X H
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MATHEMATICALLY

Let’s multiply the current state by (−1)f (0):

(−1)f (0)|0⟩(|0⟩ − |1⟩) + (−1)f (1)|1⟩(|0⟩ − |1⟩)
2

=
|0⟩(|0⟩ − |1⟩) + (−1)f (0)+f (1)|1⟩(|0⟩ − |1⟩)

2

• Multiplying the state with the constant is fine because
it changes only the global phase. The relative phase
stays the same.
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MATHEMATICALLY

Now we have two cases. First, if f is constant, then
f (0) = f (1) and we obtain

|0⟩(|0⟩ − |1⟩) + (−1)f (0)+f (1)|1⟩(|0⟩ − |1⟩)
2

=
|0⟩(|0⟩ − |1⟩) + (−1)2f (0)|1⟩(|0⟩ − |1⟩)

2

=
|0⟩(|0⟩ − |1⟩) + |1⟩(|0⟩ − |1⟩)

2

=
(|0⟩+ |1⟩)

2
(|0⟩ − |1⟩).
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MATHEMATICALLY

Second, if f is balanced, then f (0) ̸= f (1) and we obtain
(−1)f (0)+f (1) = (−1)(0+1) = −1. Thus

|0⟩(|0⟩ − |1⟩) + (−1)f (0)+f (1)|1⟩(|0⟩ − |1⟩)
2

=
|0⟩(|0⟩ − |1⟩)− |1⟩(|0⟩ − |1⟩)

2

=
(|0⟩ − |1⟩)

2
(|0⟩ − |1⟩).
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APPLY LAST HADAMARD GATE

Based on the previous lessons, we know that
Hadamard-gate is its own inverse. When we apply
Hadamard again to the first gate, we obtain

H
(
(|0⟩+ |1⟩)

2

)
(|0⟩ − |1⟩)

= |0⟩(|0⟩ − |1⟩)
and

H
(
|0⟩ − |1⟩

2

)
(|0⟩ − |1⟩)

= |1⟩(|0⟩ − |1⟩).
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI Department of Computer Science March 18 32/36



MEASUREMENT

|0⟩ H
Uf

H 0 if f constant;
1 if f balanced

|0⟩ X H
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MATHEMATICALLY

Now it is easy to read the result of the algorithm. If we
measure the first qubit of the state,

|0⟩(|0⟩ − |1⟩)

we measure 0 with 100% probability. This happens only if
f is constant. Otherwise we mesure the state

|1⟩(|0⟩ − |1⟩)

and always obtain 1. In this case f is balanced.
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LINKS TO RUNNING
EXAMPLES IN QUIRK AND
QISKIT

• Example of f being identity
• Example of f being swap
• Example of f being constant 0
• Example of f constant being 1
• Running example in Qiskit
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https://bit.ly/3w6O0n4
https://bit.ly/36eqdGT
https://bit.ly/3tYtUbS
https://bit.ly/3t9vxnT
https://colab.research.google.com/drive/1-3WVNg0obWta_wp4KMZWen73eSiHSkz5?usp=sharing
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