LESSON 5.2
 DEUTSCH-JOZSA \& BERNSTEIN-VAZIRANI ALGORITHMS

Valter Uotila

OUTLINE

Introduction

Generalized oracle

Deutsch-Jozsa algorithm

Bernstein-Vazirani algorithm

Demonstrations

RECAP FROM PREVIOUS LESSON

We learned that the simplest version of Deutsch's algorithm can be implemented with the following circuit

We use bit strings and their corresponding 10-base numbers interchangeably, e.g., the bit string 1101 is 13 in 10-base.

MOTIVATION \& BACKGROUND

- In 1992 Deutsch and Jozsa [4] developed generalization of Deutsch's algorithm
- Deutsch-Jozsa's algorithm [1] applies for any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ where $n>0$ which is either constant or maps half of the values to 1 and half of the values to 0 .
- In order that the algorithm works, it is important that the ratio is half-half which we will see later

EXAMPLE

Example

The function $f:\{00,01,10,11\} \rightarrow\{1,0\}$ mapping all the domain bit strings to 1 is one example of a function that Deutsch-Jozsa algorithm is able to detect. We need just one oracle call to say that it is constant.

MOTIVATION \& BACKGROUND

Deutsch-Jozsa's problem

Determine if $f:\{0,1\}^{n} \rightarrow\{0,1\}$ for $n \in \mathbb{N}$ is constant or balanced function.

- To get classically certainly correct result, we need to evaluate the function at every point
- As in the Deutsch's algorithm, quantumly we can solve the problem with just one oracle call

DEUTSCH VS. DEUTSCH-JOZSA

Deutsch's algorithm - 2 qubits

1. Prepare state $|0\rangle \otimes|1\rangle$
2. Hadamard transform for all qubits
3. Apply oracle of size 4
4. Apply Hadamard gate to the first qubit
5. Measure the first qubit

DEUTSCH VS. DEUTSCH-JOZSA

Deutsch-Jozsa's algorithm $-n+1$ qubits

1. Prepare state $|\underbrace{0 \ldots 0}_{n \text { times }}\rangle \otimes|1\rangle$
2. Hadamard transform for all qubits
3. Apply oracle of size 2^{n+1}
4. Apply Hadamard transform to n first qubits
5. Measure the n first qubits

ORACLE

Again we define a unitary operator (oracle) U_{f} so that

$$
U_{f}|x y\rangle=|x\rangle|y \oplus f(x)\rangle .
$$

We see that this is exactly same as in the Deutsch's algorithm. Drawing the circuit:

ORACLE

Let's study how we should design oracle so that it would implement operator U_{f} correctly. Recall that we are in the following state at the moment of applying the oracle:

So, we are interested in understanding $|-\oplus f(x)\rangle$.

ORACLE'S ACTION

Recall that as in Deutsch's algorithm, we prepare the last qubit in the state $|-\rangle=(|0\rangle-|1\rangle) / \sqrt{2}$ before we apply the oracle. We can calculate that $X|-\rangle=-|-\rangle$.

Let x be a bit string and $f(x)=0$.

$$
\begin{aligned}
U_{f}|x\rangle|-\rangle & =|x\rangle|-\oplus f(x)\rangle \\
& =|x\rangle|-\oplus 0\rangle \\
& =|x\rangle|-\rangle
\end{aligned}
$$

Let x be a bit string and $f(x)=1$.

$$
\begin{aligned}
U_{f}|x\rangle|-\rangle & =|x\rangle|-\oplus f(x)\rangle \\
& =|x\rangle|-\oplus 1\rangle \\
& =|x\rangle X|-\rangle \\
& =-|x\rangle|-\rangle
\end{aligned}
$$

MEANING OF THE PREVIOUS CALCULATIONS

- Previous calculations showed that by applying the oracle, we introduced a flip to the phase always when $f(x)=1$.

MEANING OF THE PREVIOUS CALCULATIONS

- Previous calculations showed that by applying the oracle, we introduced a flip to the phase always when $f(x)=1$.
- Allegory: we have a lock and a set of possible keys. Some of the keys work, and some don't. Now we can mark the working keys with -1 and others with 1 [2]

MEANING OF THE PREVIOUS CALCULATIONS

- Previous calculations showed that by applying the oracle, we introduced a flip to the phase always when $f(x)=1$.
- Allegory: we have a lock and a set of possible keys. Some of the keys work, and some don't. Now we can mark the working keys with -1 and others with 1 [2]
- Similarly, when f maps a bit string to 1 , we mark this with X-gate in the matrix representation of the oracle. This change introduced flipped phase for the corresponding state.

ORACLE EXAMPLE

Let $f:\{00,01,10,11\} \rightarrow\{1,0\}$ be the function which maps the first two elements to 1 and the last two elements to 0 . The matrix

$$
U_{f}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

COMPARE TO DEUTSCH'S ALGORITHM

- When we created oracles for Deutsch algorithm, we just noticed that they behave certain way and encoded this behaviour
- When we have more qubits, this becomes harder and we need some algorithm to construct oracles

COMPARE TO DEUTSCH: CASE 1

In the case that f is identity: $0 \mapsto 0$ and $1 \mapsto 1$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

COMPARE TO DEUTSCH: CASE 2

In the case that f is swap: $0 \mapsto 1$ and $1 \mapsto 0$

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

COMPARE TO DEUTSCH: CASE 3

In the case that f is constant $0: 0 \mapsto 0$ and $1 \mapsto 0$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

COMPARE TO DEUTSCH: CASE 4

In the case that f is constant $1: 0 \mapsto 1$ and $1 \mapsto 1$

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

ORACLE

- If we do not care to use the basic gates, we can use the matrix representation to implement any oracle easily. Qiskit implements a feature that creates a gate based on a given unitary matrix. I use that in the Qiskit demonstration.

ORACLE

- If we do not care to use the basic gates, we can use the matrix representation to implement any oracle easily. Qiskit implements a feature that creates a gate based on a given unitary matrix. I use that in the Qiskit demonstration.
- On the other hand, we do not necessarily have such functionality. Then we can use X-gates and multi-control-CNOT-gates. See the Quirk demonstrations.

ORACLE

- If we do not care to use the basic gates, we can use the matrix representation to implement any oracle easily. Qiskit implements a feature that creates a gate based on a given unitary matrix. I use that in the Qiskit demonstration.
- On the other hand, we do not necessarily have such functionality. Then we can use X-gates and multi-control-CNOT-gates. See the Quirk demonstrations.
- In some cases, multi-control-CNOT-gates are not available. Then we can implement the equivalent circuit using Toffoli and CNOT-gates.

PREPARE ANCILLA QUBIT AND APPLY HADAMARD TRANSFORM

The following circuit prepares the ancilla qubit in the state

MATHEMATICALLY

We start at state $|0\rangle^{\otimes n}|0\rangle$. After applying X-gate to the ancilla qubit we obtain $|0\rangle^{\otimes n}|1\rangle$. Then we apply Hadamard transform:

$$
\begin{aligned}
H^{\otimes n+1}\left(|0\rangle^{\otimes n}|1\rangle\right) & \left.=H^{\otimes n}|0\rangle^{\otimes n} H|1\rangle\right) \\
& =\frac{1}{\sqrt{2^{2}}} \sum_{i=0}^{2^{n}-1}|i\rangle \frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{i=0}^{2^{n}-1}|i\rangle(|0\rangle-|1\rangle) .
\end{aligned}
$$

APPLY ORACLE

Next we apply the oracle U_{f} :

where $\varphi=\frac{1}{\sqrt{2^{n+1}}} \sum_{i=0}^{2^{n}-1}(-1)^{f(i)}|i\rangle(|0\rangle-|1\rangle)$.

MATHEMATICALLY

Recalling that $U_{f}(|x\rangle|y\rangle)=|x\rangle|y \oplus f(x)\rangle$, we obtain

$$
\begin{aligned}
U_{f}(|x\rangle|-\rangle) & =U_{f}\left(\frac{1}{\sqrt{2^{n+1}}} \sum_{i=0}^{2^{n}-1}|i\rangle(|0\rangle-|1\rangle)\right) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{i=0}^{2^{n}-1}|i\rangle(|0 \oplus f(i)\rangle-|1 \oplus f(i)\rangle) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{i=0}^{2^{n}-1}|i\rangle(|f(i)\rangle-|1 \oplus f(i)\rangle) .
\end{aligned}
$$

MATHEMATICALLY

Now $f(i)=0$ or $f(i)=1$. Following similar reasoning as in the case of Deutsch's algorithm, we obtain

$$
U_{f}(|x\rangle|-\rangle)=\frac{1}{\sqrt{2^{n+1}}} \sum_{i=0}^{2^{n}-1}(-1)^{f(i)}|i\rangle(|0\rangle-|1\rangle) .
$$

HADAMARD TRANSFORM AGAIN

Next, we apply Hadamard transform for the first n qubits.
We can ignore the $|-\rangle$ part of the state.

where $\varphi=\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1}\left(\sum_{j=0}^{2^{n}-1}(-1)^{f(i)}(-1)^{i \cdot j}\right)|j\rangle$.

MATHEMATICALLY

$H^{\otimes n}\left(\frac{1}{\sqrt{2^{n}}} \sum_{i=0}^{2^{n}-1}(-1)^{f(i)}|i\rangle\right)=\frac{1}{\sqrt{2^{n}}} \sum_{i=0}^{2^{n}-1}(-1)^{f(i)} H^{\otimes n}|i\rangle$

$$
\begin{aligned}
& =\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1}(-1)^{f(i)}\left(\sum_{j=0}^{2^{n}-1}(-1)^{i \cdot j}|j\rangle\right) \\
& =\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1}\left(\sum_{j=0}^{2^{n}-1}(-1)^{f(i)}(-1)^{i \cdot j}\right)|j\rangle,
\end{aligned}
$$

where $i \cdot j=i_{0} j_{0} \otimes \ldots \otimes i_{n-1} j_{n-1}$ is bitwise product.

MEASUREMENT

Finally we measure the first n qubits:

MATHEMATICALLY

We see that if f is constant, then we measure $\underbrace{0 \cdots 0}_{n \text { times }}$ with probability 1 . This is true because when $j=0$, the amplitude of $|0\rangle$ is

$$
\left|\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1}(-1)^{f(i)}\right| .
$$

MATHEMATICALLY

If $f(i)=0$, then

$$
\left|\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1} 1\right|=\frac{2^{n}}{2^{n}}=1
$$

If $f(i)=1$, then

$$
\left|\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1}-1\right|=\left|-\frac{2^{n}}{2^{n}}\right|=1
$$

MATHEMATICALLY

If f is balanced, then we measure $\underbrace{0 \cdots 0}_{n \text { times }}$ with probability 0 .
In order that the algorithm produces 100\% correct solution half of the values of f needs to be 0 s and another half 1 s . The amplitude of $|0\rangle$ is

$$
\left|\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1}(-1)^{f(i)}\right| .
$$

We see that $(-1)^{f(i)}$ terms cancel each other because half of them evaluate to 1 (when $f(i)=0$) and another half to -1 (when $f(i)=1$). Thus the amplitude is 0 .

DO WE NEED THE ANCILLA QUBIT?

We can use the following kind of circuit [2] to implement the Deutsch-Jozsa algorithm without ancilla qubit:

if all measured as 0 , then f is constant; otherwise balanced

DO WE NEED THE ANCILLA QUBIT?

The oracle U_{f} is implemented so that for every element $x_{i, i}$ in its diagonal, we have $x_{i, i}=-1$ if $f(i)=1$ and $x_{i, i}=1$, if $f(i)=0$. It would be interesting to discuss pros and cons of each implementation. Besides, the third possible circuit to implement Deutsch-Jozsa algorithm with ancilla qubit is represented in [5].

MOTIVATION \& BACKGROUND

- Bernstein-Vazirani algorithm [3] was represented in 1992.
- It is a restricted version of Deutsch-Jozsa algorithm

BERNSTEIN-VAZIRANI PROBLEM

In the Deutsch-Jozsa problem, the function f was relatively general, but in the Bernstein-Vazirani problem, we restrict it more:

Problem

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ for $n \in \mathbb{N}$ be a function defined by

$$
f_{y}(x)=x \cdot y \bmod 2
$$

where $x \cdot y$ is the bitwise dot product. What is the value of y ?

EXAMPLE

For example, $x=1011$ and $y=1001$, then

$$
\begin{aligned}
f_{y}(x) & =x \cdot y \bmod 2 \\
& =(1 \cdot 1+0 \cdot 0+1 \cdot 0+1 \cdot 1) \bmod 2 \\
& =2 \bmod 2=0
\end{aligned}
$$

BERNSTEIN-VAZIRANI ALGORITHM

- The algorithm is exactly the same
- The oracle is exactly the same $U_{f}|x y\rangle=|x\rangle|y \oplus f(x)\rangle$
- The demo shows more details how the algorithm works

LINKS TO RUNNING EXAMPLES IN QUIRK AND QISKIT

- Quirk Deutsch-Jozsa algorithm example: constant 1 function f
- Quirk Deutsch-Jozsa algorithm example: balanced function f
- Qiskit implementation of Deutsch-Jozsa algorithm
- Pennylane implementation of Deutsch-Jozsa algorithm without ancilla qubit
- Qiskit implementation of Bernstein-Vazirani algorithm

REFERENCES I

[1] Qiskit textbook - deutsch-jozsa algorithm, 2022.
[2] Xanadu quantum codebook - learn quantum computing interactively online with pennylane, 2022.
[3] E. Bernstein and U. Vazirani. Quantum complexity theory.
SIAM Journal on Computing, 26(5):1411-1473, 1997.
[4] D. Deutsch and R. Jozsa.
Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553-558, Dec 1992.
[5] C. Lectures.
A practical introduction to quantum computing - Elias Fernandez-Combarro Alvarez - (4/7).
Feb 2020.

